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Maximizing Sign Matches as an Estimation Technique

Consider the stochastic process:

yjc = ê(â cxjc - sc) + åjc ê(0) = 0 (1)

The subscript j indicates an observation from the sequence (1, ..., M), while the
subscript c indicates a draw from the sequence (1, ..., C).  ê(.) is an unknown sign-
preserving function of its argument.  The variables yjc, xjc and sc are all observed.  The
variable åjc is a random, zero-mean error.  The coefficients â c  and the functional form of
ê(.) are unknown.  The econometrician is interested in deriving unbiased estimates bc of
the underlying coefficients â c.

This is a standard estimation question in international trade theory.  Consider
the subscript c to index countries and the subscript j to index factors of production.  All
factor-endowment-based theories of trade are based upon the hypothesis that a
country’s net exports of a product will be a function of the country’s comparative
advantage as defined by factor abundance.  The competing theories within that class
will have competing predictions of the volume of trade (here, the size of yjc).  In fact,
the monotonicity of ê(.) is not assured in simple parameterizations of the model.   They
will all predict, however, that the existence of comparative advantage (here, â cxjc - sc >
0) will lead to net exports of the good (yjc > 0) while the converse (comparative
disadvantage leading to net imports) will also hold.   Trefler (1993, 1995) provides two
empirical papers based upon one such theory.  His estimation results are potentially
biased due to a lack of consideration of the implications of this misspecified ê(.)
function.

Estimation.
Estimation of â c is especially simple if the hypothesis is maintained that ê(.) is a

one-for-one mapping.  OLS estimation of the equation

zjc =  yjc - sc = bc xjc + ejc (2)

separately for each c will lead to unbiased estimates bc of â c.

While these estimates are unbiased under the maintained hypothesis, they are
not robust to alternative specifications of ê(.).  Consider the example that ê(.) = kj(â cxjc -
sc).  Substitution of this into (2) will lead to 

zjc =  yjc - sc = - (1+kj) sc + kjâ cxjc + åjc (3)



1  The median regression case is a special case of the á-quantile regression problem investigated by
Koenker and Bassett (1978).

2  The ratios of bias and of standard deviation of coefficient estimates reported by Manski and
Thompson (1986) are:

25 50 100 200 400
Heteroskedastic errors (Table 2)

Bias -2.67 -1.40 -2.00 -2.50 -5.00
Standard deviation 1.28 2.00 1.88 1.67 1.40

Homoskedastic errors (Table 5)
Bias 0.12 0.07 0.00 0.00 0.00
Standard deviation 1.21 1.33 1.40 1.57 1.70

Simulations of other heteroskedastic error structures yield similar results.

The estimation technique used above will be misspecified (there should be an intercept
term) and will lead to biased estimates of â c.  Clearly, joint estimation of kj and â c is the
preferable estimation strategy in this case, although the results will depend upon the
maintained hypothesis of the functional form specified for ê(.).  The degree of
robustness of the results to this hypothesis could be determined through use of non-
parametric regression techniques: see Yatchew (1998) for an overview.

Maximum-score estimator.
A sign-match exists when yjc and the difference (â cxjc - sc) take the same sign, or

alternatively when the product yjc* (â cxjc - sc) > 0.  In the absence of the random error åjc ,
our knowledge of the function ê(.) from (1) assures that a sign-match will be observed
for each observation.  Violation of the sign-match condition will be observed for large
absolute values of åjc.  I derive an estimator for â c based upon this property.

Manski (1975, 1985) first considered the problem of robust estimation of â c when
yjc is not observed but the sign of yjc (denoted zjc = sgn(yjc)) is observed.  He observed
that the coefficients derived from a logit estimation are contingent on the underlying
errors following a logistic distribution.  By contrast, a median regression that
maximizes the number of sign matches is distribution-insensitive, and is a consistent
estimator of â c.

1  In Manski and Thompson (1986), the authors conduct Monte Carlo
experiments to compare maximum likelihood logit and maximum score estimators. 
They conclude that for most cases of non-logistic distributions of errors and for a wide
range of sample sizes the maximum score estimator has less bias and greater precision
in coefficient estimation.2

The econometric problem specified here is amenable to estimation using the
maximum score estimation technique.  While yjc is observed, it is in practice difficult for
the econometrician to specify and estimate a model that nests all alternative
hypotheses.  More parsimonious models will be characterized by non-monotonic ê(.) in
the data.  The maximum score estimation technique is robust to such non-



monotonicities in the estimation of â c.

Implementing the maximum score estimator.
The general numerical technique is a simple one.  The index c runs from 1 to C,

and there are M observations for each value of c. For the M country-specific
observations indexed by c, I undertake a grid search of estimators bc.  Those bc that
generate the highest number of sign matches (yjc* (bcxjc - sc) > 0) form the basis for the
estimate of â c.

         In contrast to the typical continuous likelihood function maximization, it is
common for the grid search, no matter how finely defined, to yield a large number of
estimates bc with equally large sign-match totals.  I consider two methods for choosing
among these bc.

•  First, I choose the average of the bc generating the largest number of sign
matches (bc

avg).  These need not be contiguous points in the grid search, so that the
value bc

avg may not itself generate the maximum sign matches.

• Second, I define an initial starting value for bc (e.g., bc
o = 1). The estimate is

then that value of bc from among those with maximum sign matches that minimizes
deviation from the initial starting value (bc

md)

Simulation 1: Country-specific deviation in vector sc.
First, I investigate the comparative properties of the maximum-score and OLS

estimators in a model for which OLS is appropriate.  In this trial I undertake 30
independent simulations of 5000 observations each.  Each simulation included 50 trials
of 100 observations each, and the percentage of sign-matches reported is the average
over those 50 trials.  Each of the 30 simulations was undertaken with the same
structure:

yjc = .5 (xjc - (.75 + mc)) + ejc (4)

 Each of the 30 simulations (subscript c) had a common but unknown (to the
econometrician) vector (.75+ mc).  The maximum score estimator derived an estimate bc

of (.75+mc).   The OLS estimator provided coefficients on xjc and an intercept, using the
observed values of yjc as dependent variable.  The reported coefficient is derived from
these.   The across-simulation means and standard deviations are as follows:

Signs matched Mean bc Std. Dev. bc

(percent)

MD sign-match 88.6 0.77 0.18
AVG sign-match 88.6 0.78 0.21
OLS 0.77 0.10



3  It will be the case that with proper specification of the underlying model non-linear least squares
will return consistent and more precise estimates of âc.  When the underlying model is misspecified,
however, the bias in results can be extreme (as in this example).

Mean value of mc over all simulations: 0.02.

The maximum score estimators yield nearly identical results to those of OLS.  However,
as expected, the mean standard error for maximum-score estimation was greater than
that of OLS.  The ratio (.18/.10) of standard deviations is similar to that found by
Manski and Thompson (1986) for its largest samples in homoskedastic logistic samples.

Simulation 2: Variations in the ê (.) function.
This simulation has 100 replications of an economy with C=40 and M=9.  The

dependent variable yjc is derived from the following equation.

yjc = kj (xjc - sc) + åjc (5)

 I specify ê(.) as a function of the index j, taking the values kj = .1 * j   for jå(1,..,M).  xjc is
created from a unit normal distribution centered at 1, while sc = .05 * c for cå(1,..,C).  åjc

is drawn from a unit normal distribution centered on zero and multiplied by .2.

As is evident from the estimation results, the maximum score estimates are
robust to the introduction of this varying kj term.  However, as the OLS results derived
from estimation of (2) on the same data indicate, the simple OLS estimator will be
biased.3  

Signs matched Mean bc Std. Dev. bc

(percent)

MD sign-match 86.7 1.003 0.080
AVG sign-match 86.7 1.007 0.091
OLS (no intercept) 0.757 0.022

Conclusion.
This note has indicated the value of use of the maximum-score estimator in a

class of problems common to empirical international trade theory.  In the absence of
knowledge about the specific functional form, the sign-matching technique of the
maximum-score estimator will be a robust and consistent estimation procedure.
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